Phosphorylation of LRRK2: from kinase to substrate.

نویسندگان

  • Evy Lobbestael
  • Veerle Baekelandt
  • Jean-Marc Taymans
چکیده

The PD (Parkinson's disease) protein LRRK2 (leucine-rich repeat kinase 2) occurs in cells as a highly phosphorylated protein, with the majority of phosphosites clustering in the region between the ankyrin repeat and leucine-rich repeat domains. The observation that several pathogenic variants of LRRK2 display strongly reduced cellular phosphorylation suggests that phosphorylation of LRRK2 is involved in the PD pathological process. Furthermore, treatment of cells with inhibitors of LRRK2 kinase activity, which are currently considered as potential disease-modifying therapeutics for PD, leads to a rapid decrease in the phosphorylation levels of LRRK2. For these reasons, understanding the cellular role and regulation of LRRK2 as a kinase and as a substrate has become the focus of intense investigation. In the present review, we discuss what is currently known about the cellular phosphorylation of LRRK2 and how this relates to its function and dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Parkinson's Disease Associated LRRK2 Exhibits Weaker In Vitro Phosphorylation of 4E-BP Compared to Autophosphorylation

Mutations in the gene encoding Leucine-rich repeat kinase 2 (LRRK2) are the most common cause of inherited Parkinson's disease (PD). LRRK2 is a multi-domain protein kinase containing a central catalytic core and a number of protein-protein interaction domains. An important step forward in the understanding of both the biology and the pathology of LRRK2 would be achieved by identification of its...

متن کامل

Phosphorylation of 4E-BP1 in the Mammalian Brain Is Not Altered by LRRK2 Expression or Pathogenic Mutations

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of autosomal dominant familial Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase enzymatic domains. Disease-associated mutations in LRRK2 variably influence enzymatic activity with the common G2019S variant leading to enhanced kinase activity. Mutant LRRK2 induces neuronal tox...

متن کامل

Identification and Characterization of a Leucine-Rich Repeat Kinase 2 (LRRK2) Consensus Phosphorylation Motif

Mutations in LRRK2 (leucine-rich repeat kinase 2) have been identified as major genetic determinants of Parkinson's disease (PD). The most prevalent mutation, G2019S, increases LRRK2's kinase activity, therefore understanding the sites and substrates that LRRK2 phosphorylates is critical to understanding its role in disease aetiology. Since the physiological substrates of this kinase are unknow...

متن کامل

LRRK2 Phosphorylates Tubulin-Associated Tau but Not the Free Molecule: LRRK2-Mediated Regulation of the Tau-Tubulin Association and Neurite Outgrowth

Leucine-rich repeat kinase 2 (LRRK2), a large protein kinase containing multi-functional domains, has been identified as the causal molecule for autosomal-dominant Parkinson's disease (PD). In the present study, we demonstrated for the first time that (i) LRRK2 interacts with tau in a tubulin-dependent manner; (ii) LRRK2 directly phosphorylates tubulin-associated tau, but not free tau; (iii) LR...

متن کامل

Assaying the Kinase Activity of LRRK2 in vitro

Leucine Rich Repeat Kinase 2 (LRRK2) is a 2527 amino acid member of the ROCO family of proteins, possessing a complex, multidomain structure including a GTPase domain (termed ROC, for Ras of Complex proteins) and a kinase domain. The discovery in 2004 of mutations in LRRK2 that cause Parkinson's disease (PD) resulted in LRRK2 being the focus of a huge volume of research into its normal function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 40 5  شماره 

صفحات  -

تاریخ انتشار 2012